Homoclinic Tangencies in Unimodal Families with Non-constant Topological Entropy

نویسنده

  • STEVEN M. PEDERSON
چکیده

Let C r ((0; 1]) denote the metric space of C r self-maps of 0; 1] and C s;r ((0; 1]) denote the metric space of C s families of maps in C r ((0; 1]) with the parameter space 0; 1]. Let Hs;r be the unimodal families with non-constant topological entropy in C s;r ((0; 1]). We show that for s 0, r 2, there is an open and dense subset Gs;r of Hs;r such that each family in Gs;r has a map with a homoclinic tangency. If s 0, r = 1, only density must hold. As the key step, with the Decomposition Theorems of Jonker & Rand and Blokh, and the Semiconjugacy Theorem of Milnor & Thurston, for s 0, r 2, we show that a generic family ff g 20;1] 2 Hs;r has a map which is arbitrarily C r-close to a map with a homoclinic tangency. This lemma could be restated as follows: for a unimodal map f 2 C r ((0; 1]), r 2, with only one critical point, which is the nondegenerate turning point, either some neighborhood of f in C r ((0; 1]) has constant topological entropy, or every neighborhood of f in C r ((0; 1]) has some map with a homoclinic tangency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Entropy Conjecture for Diffeomorphisms Away from Tangencies

We prove that every C1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously wit...

متن کامل

A Geometric Criterion for Positive Topological Entropy II: Homoclinic Tangencies

In a series of important papers [GS1,GS2] Gavrilov and Shilnikov established a topological conjugacy between a surface diffeomorphism having a dissipative hyperbolic periodic point with certain types of quadratic homoclinic tangencies and the full shift on two symbols, thus exhibiting horseshoes near a tangential homoclinic point. In this note, which should be viewed of as an addendum to [BW], ...

متن کامل

Generalized Hénon Map and Bifurcations of Homoclinic Tangencies

Abstract. We study two-parameter bifurcation diagrams of the generalized Hénon map (GHM), that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codim 2 bifurcations of fixed points of GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation o...

متن کامل

Abundance of C-robust homoclinic tangencies

A diffeomorphism f has a C-robust homoclinic tangency if there is a C-neighbourhood U of f such that every diffeomorphism in g ∈ U has a hyperbolic set Λg, depending continuously on g, such that the stable and unstable manifolds of Λg have some non-transverse intersection. For every manifold of dimension greater than or equal to three, we exhibit a local mechanism (blender-horseshoes) generatin...

متن کامل

On bifurcations of area-preserving and non-orientable maps with quadratic homoclinic tangencies

We study bifurcations of non-orientable area-preserving maps with quadratic homoclinic tangencies. We study the case when the maps are given on non-orientable two-dimensional surfaces. We consider one and two parameter general unfoldings and establish results related to the emergence of elliptic periodic orbits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999